
HBasics: An Introduction to Hadoop HBase
HUGUK, April 14th, 2009

Michael Stack
Powerset, a Microsoft Company

Overview

1. What is HBase
2. Data Model
3. Implementation
4. Using HBase
5. Project Status
6. Powered-by

What is HBase?
Distributed database modeled on Google's Bigtable

Bigtable: A Distributed Storage System for Structured Data by Chang et al.
Structures data as tables of column-oriented rows
Online access to Big Data

Random-access and updates immediately available
Whereas MapReduce is batch-processing

Multiple processes can update individual records asynchronously
Project Goal: Scalable data store

Billions of rows X millions of columns X thousands of versions
Petabytes across thousands of "commodity" servers

Apache Hadoop subproject
Runs on top of Hadoop HDFS
Data is replicated, it scales, etc

http://labs.google.com/papers/bigtable.html

What HBase is not...
A SQL Database!

Not relational
No joins
No sophisticated query engine
No column typing
No SQL, no ODBC/JDBC, Crystal Reports, etc.
No transactions
No secondary indices

Not a drop-in replacement for your RDBMS

Whats HBase for?

Traditional RDBMS bounded by size of single node
Ergo -> Big Iron
Scaling beyond an afterthought

Partitioning/replication complicated (expensive)
Compromise in RDBMS facility
1. Denormalize
2. No database-level joins, etc.

Whereas, HBase, is a scalable data store
Built to scale from the get-go
"Commodity" HW rather than the exotic

HBase replacement for 'scaled' RDBMS

More on whats' HBase for?
HBase has limited feature-set

CRUD: Create, Read, Update, & Delete
Primary-key access
No joins in db -- application-level (MapReduce)
How much does this differ from "scaled" RDBMS?

Example! Canonical use case is the Webtable
Table of web crawls keyed by URL, crawldate denotes version
Columns of webpage, parse, page attributes, etc.
Webtable fields batch (MapReduce) and random access

Batch: analytics and derivations
Random access: crawler updates, serving cached pages

Data Model: 1 of 2
Labeled tables of rows X columns X timestamp

Map where cells addressed by row/column/timestamp
As (perverse) java declaration:

 SortedMap<byte [], SortedMap<byte [],
 List<Cell>>>> hbase =
 new TreeMap<ditto>(new RawByteComparator());

Row keys uninterpreted byte arrays: E.g. an URL
Rows are ordered by Comparator (Default: byte-order)
Row updates are atomic; even if hundreds of columns

Columns grouped into columnfamilies
Columns have columnfamily prefix and then qualifier

E.g. webpage:mimetype, webpage:language
Columnfamily 'printable', qualifier arbitrary bytes

Columnfamilies in table schema but qualifiers, willy-nilly
Tables are 'sparse'; not all columns populated in a row

Data Model: 2 of 2

Cell is uninterpreted byte [] and a timestamp
E.g. webpage content

Tables partitioned into Regions
Region defined by start & end row
Regions are the 'atoms' of distribution

Deployed around the cluster

Implementation: 1 of 3
Master, one or more RegionServers, & Clients

Single-master cluster
Like HDFS & MR in Hadoop
Own start/stop cluster scripts
Own hbase-*.xml config.

Cluster carries 0->N labeled Tables
 Master assigns Table Regions to RegionServers

Master manages schema edits
Reallocation of regions when crash
Lightly loaded

RegionServer carries 0->N regions
RegionServer keeps commit log of every update
Used recovering lost regionserver edits

More on this later...
Edits go first to RS commit log, then to Region

Implementation: 2 of 3
Each Region is made of Stores

Columnfamily from data model implemented as a Store
All in columnfamily stored together; i.e. CF-orientated

Wide tables OK since only pertinent CF participate
Good for sparse data, only data stored, no need of a
NULL representation
CF members should have similar character/access

Store MemCache takes on Region writes: flushes when full
Flush adds a StoreFile
StoreFile key is r/c/t and value is cell
Per Store, when > N StoreFiles, compacted in background

When Regions get too big, they are split
RegionServer manages split

Fast, no data rewrite
Daughters server top and bottom halves of parent

Master is informed, parent is offlined, new daughters deployed

Implementation: 3 of 3
Traffic flow

Client initially goes to Master for region hosting row
Master supplies client a Region specification and host
Client caches; goes direct to RegionServer thereafter
If fault (split/crash), returns to Master to freshen its cache
Region locations in catalog tables

HBase is made of Hadoop Parts
Customized Hadoop RPC
MapFile for HStoreFiles
SequenceFile for commit logs, etc

Connecting to HBase
Java client

HBaseConfiguration config = new HBaseConfiguration();
HTable table = new HTable(config, "myTable");
Cell cell = table.get("myRow",
 "myColumnFamily:columnQualifier1");

Non-Java clients
Thrift server hosting HBase client instance

Sample ruby, c++, c#!, & java (via thrift) clients
REST server hosts HBase client

JSON or XML
MapReduce

TableInput/OutputFormat
 HBase as MapReduce source or sink

Cascading HBaseTap
PIG connector

HBase Shell
JRuby IRB

"real" shell
Non-SQL (intentional) “DSL”

get
scan
put
etc.

./bin/hbase shell SCRIPT.rb
 Admin

DDL
create
alter, etc.

Surgery on sick clusters
Operate on regions
Force Flushes, etc.

Getting Started
 No one reads the Getting Started section

First thing on our home page, first thing in javadoc
File descriptors

ulimit -n >>>> 1024
Xceiver count in Hadoop

Weird HBase failures and datanode log has "xceiverCount 258
exceeds the limit of concurrent xcievers 256 "
Make dfs.datanode.max.xcievers [sic] > 256 ... 4-10x

DFSClient timeout or "No live nodes contain current block"
HBase sees DFSC errors others don't because long-running
Set dfs.datanode.socket.write.timeout to 0 at extreme

Undo DBA-Think doing HBase schema design
Locality, physical layout, key-design

“Commodity Hardware” != old linux box found up in attic
4-8 cores, 4+ Gigs of RAM
EC2, less headache if X-large instances

History
10-11/2006 Powerset interest in Bigtable

Chad Walters & Jim Kellerman
Paper published around this time

02/2007 Mike Cafarella drive-by code dump
Jim cleans it up. Added as Hadoop contrib

10/2007 0.15.0 Hadoop
First "usable " HBase

12/18/2007 First HBase User Group @ rapleaf
01/16/2008 Hadoop TLP, HBase subproject

HBase own mailing lists, area in JIRA, website

03/19/2009 HBase 0.19.1
10th HBase release

Project Status: Current Release
0.19.0 released 01/2009

185 fixes since 0.18.0
HBase Metrics (Ganglia)

Requests/Regions/StoreFiles/Memory
Performance improvements:

Roughly 3X writing, 7X scanning
Random-reads 1-4X (dependent on cache-size/hits)
General HDFS speedup
HBaseRPC -- codes for param and method names
Pre-fetch when Scanning
Batching writes
Server-caching of small blocks (16k) of HDFS files

Open-cluster surgery tools
Manual close, split, flush regions

0.19.1 released 03/19/2009
40 fixes

Project Status: Current Development
0.20.0: Performance and Zookeeper Integration

On Zookeeper Integration (HA HBase/No SPOF)
Moving Master functionality to ZK

ZK host for hbase cluster state
Server leases
Root region location

Multiple Masters, election on failure
TODO: Regionservers moving to new master, smoothly

HBase manages ZK Cluster
...unless pointed at existing ZK Cluster

Future: masterless HBase cluster?

Project Status: Current Dev. Contd.
Performance Goal: fast enough to serve a website

Website Use Cases
1. Random Seek, then Scan 10-1000 rows
2. Get all of a row at a random offset

Dev to date:
New block-based File Format, hfile
Looked at using TFile, HADOOP-3315

Too complicated, too many streams
hfile more performant than TFile and Sequencefile

Opening MapFiles on each Scanner open
Couldn't seek+scan < ~200ms, now ~20ms

Dev TODO:
Byte-arrays everywhere/Zero-copy RPC to FileSystem
RawComparators rather than Comparators
Cut object creation
Finish up Cell and block caches, "in-memory" tables

Built-in "memcached" -- remove a layer

http://ryantwopointoh.blogspot.com/2009/02/scalability-what-are-you-doing-about-it.html
https://issues.apache.org/jira/browse/HADOOP-3315

Project Status: Current Dev. Contd.

Full-disclosure slide...
Still no sync/flush/append in HDFS
So DATA LOSS on regionserver crash, still
See hadoop-4379, 5332, etc.

Hopefully Hadoop 0.21.0

Project Status: Community
5 Committers

JimK, J-D Cryans, Andrew Purtell, and Stack (Bryan Duxbury dormant)

Recent Significant Contributors
Ryan Rawson new hfile (was rfile)
John Gray and Erik Holstad, Caching, Backup
Sishen Freecity/Brian Beggs look after REST
Clint Morgan transactional hbase (0CC), etc

6User Group Meetups to date
SOCAL HBackathon, January 30th

10-12 attendees over two days of discussions & code
Berlin Hadoop Meetup -- March 5th, 2009

Lars George of WorldLingo
HBase Extensions

ORMs: pigi, Parhely, OHM
HBase-Writer -- IA Heritrix crawling to HBase table
 datastore "Implementation of the Google App Engine Datastore in Java"

http://www.meetup.com/hbasela/
http://www.isabel-drost.de/hadoop/
http://code.google.com/p/datastore/
http://code.google.com/p/datastore/

Powered-by: 1 of 2
Mahalo.com : "the worlds first human-powered search engine"

All markup that powers the wiki is stored in HBase.
Mahalo's in-house editors produce a lot of revisions per day, not
working well in a RDBMS (MediaWiki in MySQL).
Right now it's at something like 6 million items in HBase.

WorldLingo host their Multilingual Archive in HBase.
Scan with MapReduce to machine-translate and index documents
Concurrent updates

MS Office provider since 2001
User-facing, memcached in front of hbase
Currently > tens of millions, aiming for 450M.
User since November 2007, HBase 0.15.1

Powered-by: 2 of 2
Streamy

All data for website in HBase
Replaced an RDBMS

Got so big 10M rows, denormalized and put all in one table
so no joins
 Writes still too slow so partitioned
Then tables by-day
Eventually, "...lost in admin..."

Caching in front of HBase, "..as you'd do with any RDBMS..."
Others

OpenPlaces
Groups at Adobe and Yahoo!
Powerset(Microsoft):

110 node cluster with ~50 tables of many millions of rows each

Thanks

stack@apache.org
Visit hbase.org : mailing lists, source
Join the #hbase channel up on irc.freenode.net

