

Practical MapReduce
Top ten tips

Tom White, Cloudera
Hadoop User Group UK, London
14 April 2009

About me
▪ Apache Hadoop Committer, PMC
Member, Apache Member

▪ Employed by Cloudera
▪ Writing a book on Hadoop for O’Reilly
▪ http://hadoopbook.com

What is MapReduce?

Another way of looking at it

Tips

1. Use the right MapReduce language

Structured Pig, Hive

Dynamic Streaming, Dumbo

System Java

2. Consider your input data “chunk” size
▪ Hadoop dislikes lots of small files
▪ Namenode eats memory
▪ MapReduce produces too many trivial maps

▪ CombineFileInputFormat
▪ Packs multiple files into one split
▪ Considers locality

▪ Large unsplittable files aren’t great either
▪ But see LzoTextInputFormat

3. Use SequenceFile and MapFile containers
▪ Splittable
▪ Compressed
▪ Use block compression

▪ Compact

▪ But
▪ Java-centric

4. Implement Tool
▪ Supports lots of options:
▪ -D
▪ -files
▪ -archives
▪ -libjars

▪ More testable
▪ Inject arbitrary configurations

public class MyJob extends Configured implements Tool {

 public int run(String[] args) throws Exception {
 JobConf job = new JobConf(getConf(), MyJob.class);
 // run job ...
 }

 public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(new Configuration(),
 new MyJob(), args);
 System.exit(res);
 }
}

5. Chain your jobs
▪ Don’t force the processing into one job
▪ Job overhead is coming down
▪ Scheduling is getting better
▪ FairScheduler

▪ Take a leaf out of Hive and Pig’s book
▪ EXPLAIN

▪ ChainMapper, ChainReducer
▪ M*RM*

▪ JobControl

6. Multiple partitions good
▪ Move away from the idea of a single output file
▪ Change default number of reducers

▪ Why do you need only one?
▪ Next stage is probably another MapReduce anyway
▪ Or can be digested in parallel

▪ See MapFileOutputFormat.getReaders()
▪ Use a final MapReduce or a local script to combine partitions if
needed

▪ hadoop fs -getmerge hdfs-output-dir local-file

7. Tell Hadoop your progress	
▪ Periodically call
▪ reporter.progress()
▪ reporter.setStatus(“6 of 1 gazillion records processed”)

▪ Won’t kill your job, and get a nice message into the bargain
▪ If you can’t do this, then consider (but beware hanging processes)
▪ -D mapred.task.timeout=0

▪ Watch the UI
▪ “a watched hadoop job never completes”

▪ http://twitter.com/sethladd/statuses/1499223543

▪ Get to see where the slow bits are

8. Debug with status and counters
▪ Hadoop’s answer to System.err.println is
▪ reporter.setStatus(“this record looks fishy”);
▪ reporter.incrCounter(MyCounter.WEIRDNESS, 1);
▪ System.err.println(“Some extra debug info...”);

▪ Or in Streaming
▪ sys.stderr.write(“reporter:status:this record looks fishy\n”)
▪ sys.stderr.write(“reporter:counter:MyCounter,WEIRDNESS,1\n”)
▪ sys.stderr.write(“Some extra debug info...\n”);

▪ Then you can look in the web UI as the job is running for any
problems, and click through to the logs.

9. Tune at the job level before the task level
▪ Usual suspects
▪ # mappers, reducers
▪ Combiner
▪ Intermediate compression
▪ Custom Writables
▪ Shuffle tweaks

▪ “If you’re storing stuff in a hash map, you’ve lost”
▪ Lean on the framework, but give it the memory to do its job

10. Let someone else do the cluster admin
▪ Cloudera’s Distribution for Hadoop
▪ RPMs
▪ Debs
▪ Init scripts
▪ Configuration web site

▪ Hadoop on Amazon EC2
▪ Scripts from Apache, Cloudera
▪ Elastic MapReduce

Questions?
▪ tom@cloudera.com

▪ Apache Hadoop
▪ http://hadoop.apache.org

▪ Cloudera’s Distribution for Hadoop
▪ http://www.cloudera.com/hadoop

▪ “Hadoop: The Definitive Guide”
▪ http://hadoopbook.com

(c) 2009 Cloudera, Inc. or its licensors. "Cloudera" is a registered trademark of Cloudera, Inc.. All rights reserved. 1.0

