
Cassandra
Structured Storage System over a P2P Network

Avinash Lakshman, Prashant Malik

Why Cassandra?

• Lots of data
– Copies of messages, reverse indices of

messages, per user data.
• Many incoming requests resulting in a lot

of random reads and random writes.
• No existing production ready solutions in

the market meet these requirements.

Design Goals
• High availability
• Eventual consistency

– trade-off strong consistency in favor of high
availability

• Incremental scalability
• Optimistic Replication
• “Knobs” to tune tradeoffs between consistency,

durability and latency
• Low total cost of ownership
• Minimal administration

Data Model
KEY

ColumnFamily1 Name : MailList Type : Simple Sort : Name

Name : tid1

Value : <Binary>

TimeStamp : t1

Name : tid2

Value : <Binary>

TimeStamp : t2

Name : tid3

Value : <Binary>

TimeStamp : t3

Name : tid4

Value : <Binary>

TimeStamp : t4

ColumnFamily2 Name : WordList Type : Super Sort : Time

Name : aloha

ColumnFamily3 Name : System Type : Super Sort : Name

Name : hint1

<Column List>

Name : hint2

<Column List>

Name : hint3

<Column List>

Name : hint4

<Column List>

C1

V1

T1

C2

V2

T2

C3

V3

T3

C4

V4

T4

Name : dude

C2

V2

T2

C6

V6

T6

Column Families
are declared

upfront

Columns are
added and
modified

dynamically

SuperColumns
are added and

modified
dynamically

Columns are
added and
modified

dynamically

Write Operations

• A client issues a write request to a random
node in the Cassandra cluster.

• The “Partitioner” determines the nodes
responsible for the data.

• Locally, write operations are logged and
then applied to an in-memory version.

• Commit log is stored on a dedicated disk
local to the machine.

Write cont’d
Key (CF1 , CF2 , CF3)

Commit Log
Binary serialized

Key (CF1 , CF2 , CF3)

Memtable (CF1)

Memtable (CF2)

Memtable (CF2)

• Data size

• Number of Objects

• Lifetime

Dedicated Disk

<Key name><Size of key Data><Index of columns/supercolumns><
Serialized column family>

<Key name><Size of key Data><Index of columns/supercolumns><
Serialized column family>

BLOCK Index <Key Name> Offset, <Key Name> Offset

K128 Offset

K256 Offset

K384 Offset

Bloom Filter

(Index in memory)

Data file on disk

Compactions
K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

--

--

--

Sorted

K2 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

--

--

--

Sorted

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

--

--

--

Sorted

MERGE SORT

K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

Sorted

K1 Offset

K5 Offset

K30 Offset

Bloom Filter

Loaded in memory

Index File

Data File

D E L E T E D

Write Properties

• No locks in the critical path
• Sequential disk access
• Behaves like a write back Cache
• Append support without read ahead
• Atomicity guarantee for a key
• “Always Writable”

– accept writes during failure scenarios

Read

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest Query
Digest Response Digest Response

Result

Client

Read repair if
digests differ
Read repair if
digests differ

01

1/2

F

E

D

C

B

A N=3

h(key2)

h(key1)
And Replication

10

Partitioning

Cluster Membership and Failure
Detection

• Gossip protocol is used for cluster membership.
• Super lightweight with mathematically provable properties.
• State disseminated in O(logN) rounds where N is the number of

nodes in the cluster.
• Every T seconds each member increments its heartbeat counter and

selects one other member to send its list to.
• A member merges the list with its own list .

Accrual Failure Detector
• Valuable for system management, replication, load balancing etc.
• Defined as a failure detector that outputs a value, PHI, associated

with each process.
• Also known as Adaptive Failure detectors - designed to adapt to

changing network conditions.
• The value output, PHI, represents a suspicion level.
• Applications set an appropriate threshold, trigger suspicions and

perform appropriate actions.
• In Cassandra the average time taken to detect a failure is 10-15

seconds with the PHI threshold set at 5.

Properties of the Failure Detector

• If a process p is faulty, the suspicion level
Φ(t) ∞as t ∞.

• If a process p is faulty, there is a time after which Φ(t) is monotonic
increasing.

• A process p is correct Φ(t) has an ub over an infinite execution.
• If process p is correct, then for any time T,

Φ(t) = 0 for t >= T.

Implementation
• PHI estimation is done in three phases

– Inter arrival times for each member are stored in a sampling
window.

– Estimate the distribution of the above inter arrival times.
– Gossip follows an exponential distribution.
– The value of PHI is now computed as follows:

• Φ(t) = -log10(P(tnow – tlast))
where P(t) is the CDF of an exponential distribution. P(t) denotes the
probability that a heartbeat will arrive more than t units after the previous
one. P(t) = (1 – e-tλ)

The overall mechanism is described in the figure below.

Information Flow in the
Implementation

Performance Benchmark

• Loading of data - limited by network
bandwidth.

• Read performance for Inbox Search in
production:

Search Interactions Term Search
Min 7.69 ms 7.78 ms
Median 15.69 ms 18.27 ms
Average 26.13 ms 44.41 ms

MySQL Comparison

• MySQL > 50 GB Data
Writes Average : ~300 ms
Reads Average : ~350 ms

• Cassandra > 50 GB Data
Writes Average : 0.12 ms
Reads Average : 15 ms

Lessons Learnt

• Add fancy features only when absolutely
required.

• Many types of failures are possible.
• Big systems need proper systems-level

monitoring.
• Value simple designs

Future work

• Atomicity guarantees across multiple keys
• Analysis support via Map/Reduce
• Distributed transactions
• Compression support
• Granular security via ACL’s

Questions?

	Cassandra �Structured Storage System over a P2P Network
	Why Cassandra?
	Design Goals
	Data Model
	Write Operations
	Write cont’d
	Compactions
	Write Properties
	Read
	Partitioning
	Cluster Membership and Failure Detection
	Accrual Failure Detector
	Properties of the Failure Detector
	Implementation
	Information Flow in the Implementation
	Performance Benchmark
	MySQL Comparison
	Lessons Learnt
	Future work
	Questions?

