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Why Cassandra?

• Lots of data
– Copies of messages, reverse indices of 

messages, per user data.
• Many incoming requests resulting in a lot 

of random reads and random writes.
• No existing production ready solutions in 

the market meet these requirements.



Design Goals
• High availability
• Eventual consistency

– trade-off strong consistency in favor of high 
availability

• Incremental scalability
• Optimistic Replication
• “Knobs” to tune tradeoffs between consistency, 

durability and latency
• Low total cost of ownership
• Minimal administration



Data Model
KEY

ColumnFamily1  Name : MailList Type : Simple Sort : Name

Name : tid1

Value : <Binary>

TimeStamp : t1

Name : tid2

Value : <Binary>

TimeStamp : t2

Name : tid3

Value : <Binary>

TimeStamp : t3

Name : tid4

Value : <Binary>

TimeStamp : t4

ColumnFamily2       Name : WordList Type : Super Sort : Time

Name : aloha

ColumnFamily3  Name : System Type : Super Sort : Name

Name : hint1

<Column List>

Name : hint2

<Column List>

Name : hint3

<Column List>

Name : hint4

<Column List>
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Write Operations

• A client issues a write request to a random 
node in the Cassandra cluster.

• The “Partitioner” determines the nodes 
responsible for the data.

• Locally, write operations are logged and 
then applied to an in-memory version.

• Commit log is stored on a dedicated disk 
local to the machine.



Write cont’d
Key (CF1 , CF2 , CF3)

Commit Log
Binary serialized 

Key ( CF1 , CF2 , CF3 )

Memtable ( CF1)

Memtable ( CF2)

Memtable ( CF2)

• Data size

• Number of Objects

• Lifetime

Dedicated Disk

<Key name><Size of key Data><Index of columns/supercolumns>< 
Serialized column family> 

---

---

---

---

<Key name><Size of key Data><Index of columns/supercolumns>< 
Serialized column family>

BLOCK Index  <Key Name> Offset, <Key Name> Offset

K128 Offset

K256 Offset

K384 Offset

Bloom Filter

(Index in memory)

Data file on disk



Compactions
K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

--

--

--

Sorted

K2 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

--

--

--

Sorted

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

--

--

--

Sorted

MERGE  SORT

K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

Sorted

K1   Offset

K5  Offset

K30  Offset

Bloom Filter

Loaded in memory

Index File

Data File

D E L E T E D



Write Properties

• No locks in the critical path
• Sequential disk access
• Behaves like a write back Cache
• Append support without read ahead
• Atomicity guarantee for a key
• “Always Writable”

– accept writes during failure scenarios



Read

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest Query
Digest Response Digest Response

Result

Client

Read repair if 
digests differ
Read repair if 
digests differ
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Cluster Membership and Failure 
Detection

• Gossip protocol is used for cluster membership.
• Super lightweight with mathematically provable properties.
• State disseminated in O(logN) rounds where N is the number of 

nodes in the cluster.
• Every T seconds each member increments its heartbeat counter and

selects one other member to send its list to.
• A member merges the list with its own list .











Accrual Failure Detector
• Valuable for system management, replication, load balancing etc.
• Defined as a failure detector that outputs a value, PHI, associated 

with each process. 
• Also known as Adaptive Failure detectors - designed to adapt to 

changing network conditions.
• The value output, PHI, represents a suspicion level.
• Applications set an appropriate threshold, trigger suspicions and 

perform appropriate actions.
• In Cassandra the average time taken to detect a failure is 10-15 

seconds with the PHI threshold set at 5.



Properties of the Failure Detector

• If a process p is faulty, the suspicion level 
Φ(t) ∞as t ∞.

• If a process p is faulty, there is a time after which Φ(t) is monotonic 
increasing.

• A process p is correct Φ(t) has an ub over an infinite execution.
• If process p is correct, then for any time T, 

Φ(t) = 0 for t >= T.



Implementation 
• PHI estimation is done in three phases

– Inter arrival times for each member are stored in a sampling 
window.

– Estimate the distribution of the above inter arrival times. 
– Gossip follows an exponential distribution.
– The value of PHI is now computed as follows:

• Φ(t) = -log10( P(tnow – tlast) ) 
where P(t) is the CDF of an exponential distribution. P(t) denotes the 
probability that a heartbeat will arrive more than t units after the previous 
one. P(t) = ( 1 – e-tλ )

The overall mechanism is described in the figure below.



Information Flow in the 
Implementation



Performance Benchmark

• Loading of data - limited by network 
bandwidth.

• Read performance for Inbox Search in 
production:

Search Interactions Term Search
Min 7.69 ms 7.78 ms
Median 15.69 ms 18.27 ms
Average 26.13 ms 44.41 ms



MySQL Comparison

• MySQL > 50 GB Data 
Writes Average : ~300 ms
Reads Average : ~350 ms

• Cassandra > 50 GB Data
Writes Average : 0.12 ms
Reads Average : 15 ms



Lessons Learnt

• Add fancy features only when absolutely 
required.

• Many types of failures are possible.
• Big systems need proper systems-level 

monitoring.
• Value simple designs



Future work

• Atomicity guarantees across multiple keys
• Analysis support via Map/Reduce
• Distributed transactions
• Compression support 
• Granular security via ACL’s



Questions?
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