
Design Patterns for Distributed
Non-Relational Databases

aka
Just Enough Distributed Systems To Be

Dangerous
(in 40 minutes)

Todd Lipcon
(@tlipcon)

Cloudera

June 11, 2009



Introduction

Common Underlying Assumptions

Design Patterns
Consistent Hashing
Consistency Models
Data Models
Storage Layouts
Log-Structured Merge Trees

Cluster Management
Omniscient Master
Gossip

Questions to Ask Presenters



Why We’re All Here

I Scaling up doesn’t work
I Scaling out with traditional RDBMSs isn’t so

hot either
I Sharding scales, but you lose all the features that

make RDBMSs useful!
I Sharding is operationally obnoxious.

I If we don’t need relational features, we want a
distributed NRDBMS.



Closed-source NRDBMSs
“The Inspiration”

I Google BigTable
I Applications: webtable, Reader, Maps, Blogger,

etc.

I Amazon Dynamo
I Shopping Cart, ?

I Yahoo! PNUTS
I Applications: ?



Data Interfaces
“This is the NOSQL meetup, right?”

I Every row has a key (PK)

I Key/value get/put

I multiget/multiput

I Range scan? With predicate pushdown?

I MapReduce?

I SQL?



Underlying Assumptions



Assumptions - Data Size

I The data does not fit on one node.

I The data may not fit on one rack.

I SANs are too expensive.

Conclusion:
The system must partition its data across many
nodes.



Assumptions - Reliability

I The system must be highly available to serve
web (and other) applications.

I Since the system runs on many nodes, nodes
will crash during normal operation.

I Data must be safe even though disks and
nodes will fail.

Conclusion:
The system must replicate each row to multiple
nodes and remain available despite certain node and
disk failure.



Assumptions - Performance
...and price thereof

I All systems we’re talking about today are
meant for real-time use.

I 95th or 99th percentile is more important than
average latency

I Commodity hardware and slow disks.

Conclusion:
The system needs to perform well on commodity
hardware, and maintain low latency even during
recovery operations.



Design Patterns



Partitioning Schemes
“Where does a key live?”

I Given a key, we need to determine which
node(s) it belongs on.

I If that node is down, we need to find another
copy elsewhere.

I Difficulties:
I Unbounded number of keys.
I Dynamic cluster membership.
I Node failures.



Consistent Hashing
Maintaining hashing in a dynamic cluster



Consistent Hashing
Key Placement



Consistency Models

I A consistency model determines rules for
visibility and apparent order of updates.

I Example:
I Row X is replicated on nodes M and N
I Client A writes row X to node N
I Some period of time t elapses.
I Client B reads row X from node M
I Does client B see the write from client A?

I Consistency is a continuum with tradeoffs



Strict Consistency

I All read operations must return the data from
the latest completed write operation, regardless
of which replica the operations went to

I Implies either:
I All operations for a given row go to the same node

(replication for availability)
I or nodes employ some kind of distributed

transaction protocol (eg 2 Phase Commit or Paxos)

I CAP Theorem: Strict Consistency can’t be
achieved at the same time as availability and
partition-tolerance.



Eventual Consistency

I As t →∞, readers will see writes.

I In a steady state, the system is guaranteed to
eventually return the last written value

I For example: DNS, or MySQL Slave
Replication (log shipping)

I Special cases of eventual consistency:
I Read-your-own-writes consistency (“sent mail”

box)
I Causal consistency (if you write Y after reading X,

anyone who reads Y sees X)
I gmail has RYOW but not causal!



Timestamps and Vector Clocks
Determining a history of a row

I Eventual consistency relies on deciding what
value a row will eventually converge to

I In the case of two writers writing at “the
same” time, this is difficult

I Timestamps are one solution, but rely on
synchronized clocks and don’t capture causality

I Vector clocks are an alternative method of
capturing order in a distributed system



Vector Clocks

I Definition:
I A vector clock is a tuple {t1, t2, ..., tn} of clock

values from each node
I v1 < v2 if:

I For all i , v1i ≤ v2i
I For at least one i , v1i < v2i

I v1 < v2 implies global time ordering of events

I When data is written from node i , it sets ti to
its clock value.

I This allows eventual consistency to resolve
consistency between writes on multiple replicas.



Data Models
What’s in a row?

I Primary Key → Value
I Value could be:

I Blob
I Structured (set of columns)
I Semi-structured (set of column families with

arbitrary columns, eg linkto:<url> in webtable)
I Each has advantages and disadvantages

I Secondary Indexes? Tables/namespaces?



Multi-Version Storage
Using Timestamps for a 3rd dimension

I Each table cell has a timestamp

I Timestamps don’t necessarily need to
correspond to real life

I Multiple versions (and tombstones) can exist
concurrently for a given row

I Reads may return “most recent”, “most recent
before T”, etc. (free snapshots)

I System may provide optimistic concurrency
control with compare-and-swap on timestamps



Storage Layouts
How do we lay out rows and columns on disk?

I Determines performance of different access
patterns

I Storage layout maps directly to disk access
patterns

I Fast writes? Fast reads? Fast scans?

I Whole-row access or subsets of columns?



Row-based Storage

I Pros:
I Good locality of access (on disk and in cache) of

different columns
I Read/write of a single row is a single IO operation.

I Cons:
I But if you want to scan only one column, you still

read all.



Columnar Storage

I Pros:
I Data for a given column is stored sequentially
I Scanning a single column (eg aggregate queries) is

fast

I Cons:
I Reading a single row may seek once per column.



Columnar Storage with Locality Groups

I Columns are organized into families (“locality
groups”)

I Benefits of row-based layout within a group.

I Benefits of column-based - don’t have to read
groups you don’t care about.



Log Structured Merge Trees
aka “The BigTable model”

I Random IO for writes is bad (and impossible in
some DFSs)

I LSM Trees convert random writes to sequential
writes

I Writes go to a commit log and in-memory
storage (Memtable)

I The Memtable is occasionally flushed to disk
(SSTable)

I The disk stores are periodically compacted

P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured merge-tree

(LSM-tree). Acta Informatica. 1996.



LSM Data Layout



LSM Write Path



LSM Read Path



LSM Read Path + Bloom Filters



LSM Memtable Flush



LSM Compaction



Cluster Management

I Clients need to know where to find data
(consistent hashing tokens, etc)

I Internal nodes may need to find each other as
well

I Since nodes may fail and recover, a
configuration file doesn’t really suffice

I We need a way of keeping some kind of
consistent view of the cluster state



Omniscient Master

I When nodes join/leave or change state, they
talk to a master

I That master holds the authoritative view of the
world

I Pros: simplicity, single consistent view of the
cluster

I Cons: potential SPOF unless master is made
highly available. Not partition-tolerant.



Gossip

I Gossip is one method to propagate a view of
cluster status.

I Every t seconds, on each node:
I The node selects some other node to chat with.
I The node reconciles its view of the cluster with its

gossip buddy.
I Each node maintains a “timestamp” for itself and

for the most recent information it has from every
other node.

I Information about cluster state spreads in
O(lgn) rounds (eventual consistency)

I Scalable and no SPOF, but state is only
eventually consistent



Gossip - Initial State



Gossip - Round 1



Gossip - Round 2



Gossip - Round 3



Gossip - Round 4



Questions to Ask Presenters



Scalability and Reliability

I What are the scaling bottlenecks? How does it
react when overloaded?

I Are there any single points of failure?

I When nodes fail, does the system maintain
availability of all data?

I Does the system automatically re-replicate
when replicas are lost?

I When new nodes are added, does the system
automatically rebalance data?



Performance

I What’s the goal? Batch throughput or request
latency?

I How many seeks for reads? For writes? How
many net RTTs?

I What 99th percentile latencies have been
measured in practice?

I How do failures impact serving latencies?

I What throughput has been measured in
practice for bulk loads?



Consistency

I What consistency model does the system
provide?

I What situations would cause a lapse of
consistency, if any?

I Can consistency semantics be tweaked by
configuration settings?

I Is there a way to do compare-and-swap on row
contents for optimistic locking? Multirow?



Cluster Management and Topology

I Does the system have a single master? Does it
use gossip to spread cluster management data?

I Can it withstand network partitions and still
provide some level of service?

I Can it be deployed across multiple datacenters
for disaster recovery?

I Can nodes be commissioned/decomissioned
automatically without downtime?

I Operational hooks for monitoring and metrics?



Data Model and Storage

I What data model and storage system does the
system provide?

I Is it pluggable?

I What IO patterns does the system cause under
different workloads?

I Is the system best at random or sequential
access? For read-mostly or write-mostly?

I Are there practical limits on key, value, or row
sizes?

I Is compression available?



Data Access Methods

I What methods exist for accessing data? Can I
access it from language X?

I Is there a way to perform filtering or selection
at the server side?

I Are there bulk load tools to get data in/out
efficiently?

I Is there a provision for data backup/restore?



Real Life Considerations
(I was talking about fake life in the first 45 slides)

I Who uses this system? How big are the
clusters it’s deployed on, and what kind of load
do they handle?

I Who develops this system? Is this a community
project or run by a single organization? Are
outside contributions regularly accepted?

I Who supports this system? Is there an active
community who will help me deploy it and
debug issues? Docs?

I What is the open source license?

I What is the development roadmap?



Questions?

http://cloudera-todd.s3.amazonaws.com/nosql.pdf


	Outline
	Introduction
	Common Underlying Assumptions
	Design Patterns
	Consistent Hashing
	Consistency Models
	Data Models
	Storage Layouts
	Log-Structured Merge Trees

	Cluster Management
	Omniscient Master
	Gossip

	Questions to Ask Presenters

