
Scalable LAMP Development
for Growing Web Apps
Matthew Ogle, matt@last.fm
FoWA 2007

mailto:matt@last.fm
mailto:matt@last.fm

Workshop Overview

1. Introductions (who am I? who are you? why are you here?)

2. A few definitions...

3. Scalable Development Practices

4. Hardware / Software Solutions (that won’t break the bank)

5. Social Software Growth (get open, get viral)

6. Open Mic / Q&A

Introductions

• About me: I joined Last.fm in early 2005

• First big project: merging Audioscrobbler.com and Last.fm
(mid-2005)

• Spent nearly two years ‘in the trenches’ as the site
and team grew rapidly...

1. Introductions

1. Introductions

1. Introductions

Introductions

1. Introductions

We’ve got a room full
of web apps and expertise.

Let’s hear yours!

So, today is about...

Scalable LAMP Development
for Growing Web Apps

2. A few definitions

“Scalable”

• Scalability myths:

1. Scalability is about performance

2. Scalability requires “enterprise technology” or specific
protocols/platforms

3. Scalability is an architectural problem

2. A few definitions

“Scalable”

• What is a scalable system?

1. It can accommodate increased usage.

2. It can accommodate an increased dataset.

3. It’s maintainable.

Cal Henderson, Building Scalable Web Sites

2. A few definitions

“LAMP”

• Coined in the late 1990s to describe a viable free software
alternative to commercial web stacks

• Linux - Apache - MySQL - PHP / Perl / Python …

• LAMR, LAMAR, AMP, BAPP, MARS, FAMP …

2. A few definitions

“LAMP”

PHP
XHTML, CSS, Ajax

MySQL

Apache

Linux

Where it all starts: single-server LAMP stack

2. A few definitions

MySQL

Linux

MySQL

Linux
MySQL

Linux
MySQL

Linux

Smarty
XHTML

PHP
Memcached

Apache

Linux

Smarty
XHTML

PHP
Memcached

Apache

Linux

Smarty
XHTML

PHP
Memcached

Apache

Linux

Smarty
XHTML

PHP

Memcached

Apache

Linux

“LAHMM
 MPPS?”

perlbal

Linux

CSS + JS

lighthttpd
Linux

CSS + JS

lighthttpd
Linux

CSS + JS

lighthttpd
Linux

Hadoop

MogileFS
...

Where we can go: horizontal LAMP scaling example

2. A few definitions

“Development”

• Development myths:

1. Development teams ought to scale just like site/server growth

2. Hiring more developers speeds projects up
(Fred Brooks, The Mythical Man-Month)

3. Choosing the perfect platform (eg. Rails) means
your app will practically write itself!

2. A few definitions

“Growing Web Apps”

• Growing: adjective or verb?

• When should you plan for growth?

...premature optimization is the root of all evil
(or at least most of it) in programming.
– Don Knuth

• How does growth happen? Who drives it?

• What strategies can stimulate it?

2. A few definitions

The Basics

• In the beginning... files are edited directly on the server.

• Problems quickly emerge with this model:

1. Hard to work collaboratively

2. Hard to track what’s been done and needs doing

3. Site can appear broken while you work on it

• No modern web app should be developed without a source
control system and a bug tracking system.

3. Scalable Development Practices

Source Control

• “The ability to undo your mistakes.”

• Wide range of uses, from simple (single-developer revision history)
to complex (managing large projects across multiple apps and
releases)

• Last.fm strongly recommends Subversion (svn)
http://subversion.tigris.org

• Learn it, use it, love it.
FREE svn book: http://svnbook.red-bean.com/

3. Scalable Development Practices

http://subversion.tigris.org
http://subversion.tigris.org
http://svnbook.red-bean.com
http://svnbook.red-bean.com

Subversion Use at Last.fm
• Last.fm develops most new features in the svn trunk

• As releases approach, we branch from trunk for each major release
(eg. a new public beta at http://beta.last.fm)

• We maintain a branch for each live version of the website (ie.
beta.last.fm, www.last.fm, www.lastfm.de, etc)

• Bugs are fixed in the “highest” (oldest) branch in which they occur,
and then changesets are merged downwards to trunk

• Any major refactoring takes place in a refactoring branch which is
merged to trunk once complete

• Not the only model... what’s yours?

3. Scalable Development Practices

http://www.last.fm
http://www.last.fm
http://www.lastfm.de
http://www.lastfm.de

Issue / Bug Tracking

• After source control, the most useful tool for a growing web app

• Helps you track and prioritize bugs and new feature development

• Trac is free and can be integrated with Subversion
http://trac.edgewall.org/

3. Scalable Development Practices

http://trac.edgewall.org
http://trac.edgewall.org

3. Scalable Development Practices

3. Scalable Development Practices

3. Scalable Development Practices

3. Scalable Development Practices

3. Scalable Development Practices

3. Scalable Development Practices

Work Environment

• Once your app starts to grow, you’ll need to split your
development environment into two or three parts

• Development
eg. http://www.dev.last.fm

• Usually a dedicated server running a reduced data version of the
live database

• Staging
eg http://www.staging.last.fm

• Used to test release branches on production hardware/data

3. Scalable Development Practices

http://www.dev.last.fm
http://www.dev.last.fm
http://www.staging.last.fm
http://www.staging.last.fm

Work Environment

• Production (live)
eg. http://www.last.fm

• Branches are deployed to production once they’ve been tested
on staging.

• The whole process:

3. Scalable Development Practices

Develop Commit and move
to staging Deploy

http://www.dev.last.fm
http://www.dev.last.fm

Agile Development
• Last.fm follows a modified version of the “Scrum” model

• Releases are developed iteratively over 2-4 week “sprints”

3. Scalable Development Practices

• Takeaway concepts for Last.fm were:

• Move features instead of deadlines

• Iteration 1 - what’s the bare minimum where it’s useful?

• “People trump process.”

• More information and ugly diagrams available at
http://www.controlchaos.com/about/

http://www.controlchaos.com/about/
http://www.controlchaos.com/about/

Keeping it together

• More than 5 developers... time to split into teams

• Systems guys, back end devs, front end devs, designers...

• ...directors, marketing people, interns...

• Need a way to radiate information across the company

• Endless meetings suck and prevent people
from “just getting on with it”

3. Scalable Development Practices

Osmotic Communication
• Find ways to keep everyone “in the loop” as your team grows

• Example from Last.fm’s IRC channel (with hooks into svn + trac)

3. Scalable Development Practices

irccat: SVN commit by norman (23872) 'randomSplitter: splits data into train and test sets randomly' (changeset: https://admindev.last.fm/
trac/changeset/23872)

3:40 PM

irccat: *** jonty is refreshing webnodes now: 'Fix for group owners'

mischa: jonty: memcache key should be set to: java-playlist-10093 where 10093 ==userid.

irccat: Trac: ticket #1779 (http://support.last.fm/trac/ticket/1779) changed by julian, Comment: Fixed for the next release..

irccat: number of anon flash streams is 1440, number of registered flash streams is 764

felix: hey abc when did you put the adsense leaderboard on bottom cat pages live?

abc: friday

3:45 PM

mokele: ? lookup track 11082618

irccat: track.id(11082618) Zetan Spore ??? Subspace Distortion http://www.last.fm/music/Zetan+Spore/_/Subspace+Distortion (lastfm=t)

pete_bug: jonty, can you please suspend PP campaign 3670?

jonty: pete_bug, sure one sec.

irccat: Trac: ticket #1526 (http://support.last.fm/trac/ticket/1526) "group recommendations are slow" created by muz.

https://admindev.last.fm/trac/changeset/23872
https://admindev.last.fm/trac/changeset/23872
https://admindev.last.fm/trac/changeset/23872
https://admindev.last.fm/trac/changeset/23872
http://support.last.fm/trac/ticket/1779
http://support.last.fm/trac/ticket/1779
http://www.last.fm/music/Zetan+Spore/_/Subspace+Distortion
http://www.last.fm/music/Zetan+Spore/_/Subspace+Distortion
http://support.last.fm/trac/ticket/1526
http://support.last.fm/trac/ticket/1526

Announcement time...

IRCCat Goes Open Source

• Grab it at:
http://static.last.fm/rj/irccat.tar.bz2

• From the README:

IRCcat does 2 things:

1) Listens on a specific ip:port and writes incoming data to an IRC channel.
 This is useful for sending various announcements and log messages to irc
 from shell scripts, Nagios and other services.

2) Hands off commands issued on irc to a handler program (eg: shell script)
 and responds to irc with the output of the handler script. This only
 happens for commands addressed to irccat: or prefixed with ?.
 (easily extend irccat functionality with your own scripts)

3. Scalable Development Practices

http://static.last.fm/rj/irccat.tar.bz2
http://static.last.fm/rj/irccat.tar.bz2

IRCCat SVN commit notifications

REPOS="$1"
REV="$2"
LOG=`/usr/bin/svnlook log -r $REV $REPOS`
AUTHOR=`/usr/bin/svnlook author -r $REV $REPOS`
echo "SVN commit by $AUTHOR (r$REV) '$LOG' http://web-svn-interface.last.fm/.../?
rev=$REV" | netcat -q0 machinename 12345

• This is what we have in our SVN repo/hooks/post-commit file:

3. Scalable Development Practices

http://web-svn-interface.last.fm/.../?rev=$REV
http://web-svn-interface.last.fm/.../?rev=$REV
http://web-svn-interface.last.fm/.../?rev=$REV
http://web-svn-interface.last.fm/.../?rev=$REV

Trac ticketing notifications

import socket
from trac.core import *
from trac.ticket.api import ITicketChangeListener

class IrcCatListener(Component):
 implements(ITicketChangeListener)

 def _sendText(self, ticketid, text):
 try:
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect(("1.2.3.4",12345))
 s.send("#last.fm Trac: ticket #%i (http://www.example.com/trac/ticket/%i) %s" %
(ticketid, ticketid, text))
 s.close()
 except:
 return

 def ticket_created(self, ticket):
 self._sendText(ticket.id, "\"%s\" created by %s." % (ticket.values['summary']
[0:100], ticket.values['reporter']))

 def ticket_changed(self, ticket, comment, author, old_values):
 self._sendText(ticket.id, "changed by %s, Comment: %s." % (author, comment[0:100]))

• Same sort of thing, but in Python this time:

http://www.apple.com/
http://www.apple.com/

IRCCat Feedback

• Email: rj@last.fm

• Web: http://www.last.fm/user/RJ

• Irc: irc.audioscrobbler.com/audioscrobbler

3. Scalable Development Practices

mailto:rj@last.fm
mailto:rj@last.fm
http://www.last.fm/user/RJ
http://www.last.fm/user/RJ

Summing Up	

• The best tools are the simplest tools

• It something works for your team, hack it into something even
better (plus you might even accidentally create Flickr or something)

• Beware expensive seminars and books titled “Exxxxtreme Coding
To The Max Lightweight Iterative Agilicious Productotron”

• Your process is working when it doesn’t feel like a process

• People trump process

3. Scalable Development Practices

Growing Hardware + Software
• As traffic to your app grows, a single server will quickly become

overwhelmed.

• With some clever use of free software, you can help keep costs
down as you begin to expand your hardware capacity.

MySQL
(InnoDB)

Linux

PHP

Apache

Linux

PHP

MySQL

Apache

Linux

4. Hardware / software solutions

Growing Hardware + Software
• As traffic to your app grows, a single server will quickly become

overwhelmed.

• With some clever use of free software, you can help keep costs
down as you begin to expand your hardware capacity.

MySQL
(InnoDB)

Linux

PHP

Apache

Linux

4. Hardware / software solutions

PHP

Apache

Linux

PHP

Apache

Linux

PHP

Apache

Linux

MySQL
(InnoDB)

Linux
Load balancing Replication

Load Balancing with perlbal
• Courtesy Brad Fitzpatrick (Livejournal),

Perl-based reverse proxy / load balancer

• http://www.danga.com/perlbal/

• Sits in front of your webservers, farming incoming requests to the
servers best able to handle them

• On-the-fly (no restart) configuration

• Last.fm uses perlbal with diskless netboot webservers

• Stats / reporting

• Can do interesting things with queues + priorities, URL mapping, ...

4. Hardware / software solutions

http://www.danga.com/perlbal/
http://www.danga.com/perlbal/

Mining perlbal data...

4. Hardware / software solutions

Attack of the replicants

• Aside from increased load capacity / scaling abilities, there are
other good reasons to replicate your databases.

• Hot spares (fail-over)

• Another backup of your data

4. Hardware / software solutions

MySQL Replication
• Replication features built in to MySQL

• Master / slave replication

• Master DB records all queries to a log, which slaves read and run
locally

• Master can have many slaves, slaves can only have one master

• Can only write to master, can read from master or slave (but: slave
replication is asynchronous, replication lag)

• If your app requires equal numbers of reads + writes, consider
circular replication (‘quasi master-master’)

• Great article on advanced MySQL replication tips:
http://www.onlamp.com/pub/a/onlamp/2006/04/20/advanced-
mysql-replication.html

http://www.onlamp.com/pub/a/onlamp/2006/04/20/advanced-mysql-replication.html
http://www.onlamp.com/pub/a/onlamp/2006/04/20/advanced-mysql-replication.html
http://www.onlamp.com/pub/a/onlamp/2006/04/20/advanced-mysql-replication.html
http://www.onlamp.com/pub/a/onlamp/2006/04/20/advanced-mysql-replication.html

Replication-aware Apps
• You’re using a database layer, right? Whew.

• Before replication, you might have code like this:

function getBlah() {
 global $dbmanager;
 $db = $dbmanager->getGlobalDB();
 if ($db) {
 $blah = $db->getOne("select foo from blah where id={$this->id}");
 return $blah;
 }
 else return false;
}

function saveBlah() {
 global $dbmanager;
 $db = $dbmanager->getGlobalDB();
 if ($db) {
 $blah = $db->query("update blah set foo={$this->blah} where id={$this->id}");
 return $blah;
 }

4. Hardware / software solutions

• If functions that read and write are separated in your app logic,
supporting replication can be as easy as adding a parameter.

// meanwhile, in the DBManager class...

function getGlobalDB() {
global $DB_DSN, $DB_OPTIONS;
$connection = DBManager::connect($DB_DSN, $DB_OPTIONS, 'Global');
if (!DB::isError($connection))

return $connection;
else return false;

function getGlobalDB($forWrite = false) {
global $DB_DSN, $DB_OPTIONS, $DBSLAVE_DSNS, $DBSLAVE_OPTIONS;
if ($forWrite) {

$connection = DBManager::connect($DB_DSN, $DB_OPTIONS, 'Global');
// handle errors and return connection
}

else {
shuffle($DBSLAVE_DSNS); // let’s pick a random slave to hit
$connection = DBManager::connect($DBSLAVE_DSNS[0], $DBSLAVE_OPTIONS, 'Global Slave');
// handle errors and return

}
}

// then, back in saveBlah(), a one-line change...
$db->getGlobalDB(true);

The Secret Weapon - Memcached

• Once again, Brad Fitzpatrick / Danga to the rescue:
http://www.danga.com/memcached/

• “memcached is a high-performance, distributed memory object
caching system, generic in nature, but intended for use in speeding
up dynamic web applications by alleviating database load.”

• Every app has pieces of data – like user account settings – which
need to be read for every page load but seldom written to

• Why bother the database at all?

• Especially when you can easily run the memcached daemon
across any number of machines with spare RAM...
(like your webservers)

4. Hardware / software solutions

http://www.danga.com/memcached/
http://www.danga.com/memcached/

Using memcached in your app

• Mature memcached libraries exist for PHP, Perl, Python, Ruby,
Java, C#, and C.

• Like most caching systems, very simple interface:
you get or set values based on keys

• Interesting approach to distributed caching: when you set a value,
the API hashes your key to a unique server (by hashing to an
integer modulo # of memcache servers you have)

4. Hardware / software solutions

// pre-memcached code

function getBlah($id=1){
 global $dbmanager;

 // connect to db:
 $global =& $dbmanager->getGlobalDB();

 // get blah from database:
 $blah =& $global->getOne("select blah from table where id=?", array($id));

 return $blah;
}

Basic usage pattern

4. Hardware / software solutions

function getBlah($id=1){
 global $dbmanager, $memcache;
 $key = "blah:$id";

 // see if blah exists in memcache:
 $blah = $memcache->get($key);

 // if blah doesnt exist..
 if(!$blah){
 // connect to db:
 $global =& $dbmanager->getGlobalDB();
 // get blah from database:
 $blah =& $global->getOne("select blah from table where id=?", array($id));
 // save blah to memcache for next time
 $memcache->set($key, $blah, 86400); // expires after 24hrs
 }

 return $blah;
}

Sample pattern for classes
class Blah {

 function Blah($db_row) {
 // constructor populates instance vars from db row
 $this->_load($db_row);
 }

 function cache() {
 // save the current ver of this object into memcache
 global $memcache;
 $memcache->set(Blah::getCacheKey(), $this, 86400); // 24 hrs
 }

 function uncache() {
 // clear the cached ver of this object (after writing to db, etc)
 global $memcache;
 $memcache->delete($this->getCacheKey());
 }

 function getCacheKey($id = false) {
 if (!$id)
 $id = $this->id;
 return "blah:$id";
 }

 // static function - Factory pattern stylee
 function getById($id) {
 $key = Blah::getCacheKey($id);
 ... // check memcache for key, return if found
 ... // otherwise query db and construct with Blah($db_row)
 }

}

Memcached gotchas, pt 1
• Need to be careful not to re-cache objects

• Imagine a database :
Artist id 1 = Radiohead
Album id 1 = OK Computer

• Let’s assume that your classes for Artist and Album have ‘getById’
methods which can be called to return objects which (ideally) have
been stored in memcache:

$album = Album::getById(1); // retrieved from memcache with key ‘album:1’
$artist = Artist::getById(1); // retrieved from memcache with key ‘artist:1’

• If we further assume that an album always has an associated artist
object, it’s tempting to make Album::getById function such that

$artist = $album->artist; // same $artist object, stored as a var in $album

Memcached gotchas, pt 1
• Problem: what happens when you call $album->cache()?

• Keep your classes atomic and your caching infrastructure will have
more room to store all your objects in memory

$artist = $album->getArtist(); // getArtist() can make a call to Artist::getById(),

4. Hardware / software solutions

Memcached gotchas, continued
• You can only invalidate single keys, not wildcard ranges (can’t say:

delete ‘blah:*’)

• What happens when you add more servers?

• What happens when you need the same object multiple times on a
page?

• What about get_multi?

“We use it a lot. We divide the data for a given page into "stuff we need immediately for the
business logic that will change what other data we need to fetch," "stuff we need for the business
logic that we can evaluate in isolation," and "stuff we're going to display." The first gets fetched as
needed during the execution of the page. The second and third, we queue up internally and
request all in one big "get" just before rendering the page at the end of the request; for the
second class of data, we have a callback mechanism wrapped around the memcached client so
that we can run our business logic using some of the returned data. There are some additional
wrinkles but that's the rough idea.”
– Steven Grimm, Facebook

Serving Static Content

• Apache and PHP (or Python, or...) work well together, but aren’t
optimized for serving static files (straight HTML, CSS, images, etc)

• Last.fm serves javascript and CSS from a dedicated server running
lighthttpd (http://www.lighttpd.net/)

• User avatars, artist images, etc are served seamlessly from
multiple machines thanks to MogileFS (http://www.danga.com/
mogilefs/), an open source distributed file system

4. Hardware / software solutions

http://www.lighttpd.net
http://www.lighttpd.net
http://www.danga.com/mogilefs/
http://www.danga.com/mogilefs/
http://www.danga.com/mogilefs/
http://www.danga.com/mogilefs/

Versioning CSS + Javascript

• Problem 1:
Some browsers cache CSS and Javascript forever, and you need a
painless way to push out improvements and bugfixes.

• Problem 2:
Browsers load CSS + JS more quickly if they aren’t contained in
many separate files, but it’s hard to develop collaboratively when
everything’s in one big file

4. Hardware / software solutions

Compiled CSS + Javascript
• At Last.fm we split our CSS and Javascript into multiple small files,

broken down by site area (CSS) or functionalities (JS)

• On our static server, /js/ and /css/ contain numbered directories
and a ‘source’ directory

• The source directory contains all our small files and a Makefile.

• Here’s what happens when you ‘make install’ in our CSS source:

Main.css: Main_orig.css
 cat Main_orig.css | sed -e 's/{$$static}/http:\/\/static.last.fm/g' > ./Main.css

Main_orig.css: clean
 cat *.css > Main_orig.css

install: Main.css
 cp Main.css "../"`find ../ -type d -iregex "\.\.\/[0-9]+" | sed -e 's/\.\.\///' | sort -
rn | head -n1`

clean:
 cp Main.css Main.bak
 rm -f Main_orig.css
 rm -f Main.css

Compiled CSS + Javascript
• Our javascript make file uses Rhino to include error checking and

to compression:

main.js: main_orig.js
 java -jar /usr/share/java/custom_rhino.jar -c ./main_orig.js > main.js

main_orig.js: clean
 cat *.js > main_orig.js

install: main.js
 cp main.js ../`find ../ -type d -iregex "\.\.\/[0-9]+" | sed -e 's/\.\.\///' | sort -
rn | head -n1`

4. Hardware / software solutions

Putting it all together - profiling

• Profile your database and memcache requests as you develop -
it’s usually easier to optimize as you work on new feature

• Last.fm’s development sites include a profiling footer, and use
*_Profiling classes which extend our DBManager and Memcache
frameworks.

• Some things are harder to profile: internal HTTP requests,
Javascript. What’s the best profiling you’ve seen?

4. Hardware / software solutions

Monitoring - Ganglia

Monitoring - Nagios

Growing Social Software
• To recap a few points from yesterday...

• Involve your users in your application’s growth story: it helps
insulate against growing pains, and it’s just kinda nice too

• Don’t fear open forums

• Best way to find out when stuff is broken

• Best source of new feature ideas

• Find ways of rewarding community leaders

• Make your site’s growth a selfish aim for existing users

• Have fun with tone

• Go global...

5. Growing Social Software

5. Growing Social Software

Going Viral

• Take your web application’s most compelling content or feature,
and make it exportable.

• Or, as Fred Wilson suggests...

1 - Microchunk it - Reduce the content to its simplest form.

2 - Free it - Put it out there without walls around it or strings on it.

3 - Syndicate it - Let anyone take it and run with it.

4 - Monetize it - Put the monetization and tracking systems into the
microchunk.

5. Growing Social Software

Last.fm Viral Experiments

• Stop, demo-time.

5. Growing Social Software

The Reigning Champs
• Slide.com Demo (via http://profile.myspace.com/index.cfm?

fuseaction=user.viewprofile&friendid=131137589)

5. Growing Social Software

http://profile.myspace.com/index.cfm?fuseaction=user.viewprofile&friendid=131137589
http://profile.myspace.com/index.cfm?fuseaction=user.viewprofile&friendid=131137589
http://profile.myspace.com/index.cfm?fuseaction=user.viewprofile&friendid=131137589
http://profile.myspace.com/index.cfm?fuseaction=user.viewprofile&friendid=131137589

Growing Userbases	

• As your site grows, your userbase will change

• Khoi Vinh yesterday:

• “Most users are intermediates, but most features are designed
for experts.”

• “It’s better to piss of the experts than the beginners.”

• Hard core scrobblers vs “Sellout Last.fm”

• This challenge can inspire design + interface innovation

5. Growing Social Software

Open mic!

Q&A

This has been fun.

• Stay in touch - drop me a line at: matt@last.fm

• By Friday evening a PDF version of this presentation will be
available online at:
http://static.last.fm/matt/fowa/workshop.pdf

• Come work with us!
http://www.last.fm/about/jobs/

mailto:matt@last.fm
mailto:matt@last.fm
http://static.last.fm/matt/fowa/workshop.pdf
http://static.last.fm/matt/fowa/workshop.pdf
http://www.last.fm/about/jobs/
http://www.last.fm/about/jobs/

